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Hypothèse

Dans tout ce chapitre, E est un ensemble quelconque.

1 Définitions et exemples

Définition 17.1 – Définition “intuitive”

Une relation (binaire) sur E est la donnée d’une assertion P(x,y) qui dépend de deux éléments x,y ∈ E
quelconques. Si on note cette relation R, on écrira pour la définir :

xRy ⇐⇒ P(x,y)

La valeur de vérité de l’assertion P(x,y) dépend bien sûr de x et de y. Le symbole R est souvent remplacé par
d’autres : ∼, ⪯, |, etc.

Exemple 1. ◦ Sur Z, on peut définir la relation “divise” : b | a ⇐⇒ ∃k ∈ Z a = kb. Avec cette définition :

2| 4 est vrai 7| 6 est faux 0 | 0 est ..........

◦ Soit m ∈ N∗. On peut définir la relation “congru modulo m” sur Z par : a ≡ b [m] ⇐⇒ ∃k ∈ Z a−b = mk.
Avec cette définition :

14 ≡ 2 [3] mais on a aussi 14 ≡ 5 [3] 14 ≡−1 [3] ...
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2 Relation d’équivalence

2.1 Définition

Définition 17.2 – Relation d’équivalence

Soit R une relation (binaire) sur E. On dit que R est une relation d’équivalence sur E si

1. R est réflexive, càd ∀x ∈ E xRx
2. R est symétrique, càd ∀x,y ∈ E xRy =⇒ yRx
3. R est transitive, càd ∀x,y,z ∈ E (xRy et yRz) =⇒ xRz

Théorème 17.3

Soit m ∈ N∗. La relation “congru modulo m” est une relation d’équivalence sur Z.

Démonstration. Soit a,b,c ∈ Z

1. Montrons que la relation est réflexive.

a ≡ a [m] ⇐⇒ ∃k ∈ Z a−a = mk

Comme a − a = 0 = m × 0 on en déduit que a ≡ a
[
m
]
. Donc la relation est

réflexive.

2. Montrons que la relation est symétrique. Supposons que a ≡ b [m]. Montrons que
b ≡ a [m]. Tout d’abord, il existe k ∈ Z tel que a−b = mk. Alors, b−a = m(−k).
En posant k′ =−k ∈ Z, on a bien b−a = mk′. Ainsi, b ≡ a [m]. Donc la relation
est symétrique.

3. Montrons que la relation est transitive. Supposons que a ≡ b [m] et que b ≡ c [m].
Montrons que a ≡ c [m]. Par hypothèse, il existe k,k′ ∈ Z tels que{

a−b = mk

b− c = mk′
donc a− c = mk′′ avec k′′ = k+ k′ ∈ Z

donc a ≡ c
[
m
]

.

Exemple 2. ◦ Plus généralement, pour tout α ∈ R (par exemple α = 2π), on peut montrer que la relation
“congru modulo α” est aussi une relation d’équivalence sur R.

◦ Dans tout ensemble E, la relation d’égalité xRy ⇐⇒ x = y est aussi une relation d’équivalence.

◦ Sur R, la relation xRy ⇐⇒ x ≤ y n’est pas une relation d’équivalence car elle n’est pas ...............
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2.2 Aparté : union et intersection d’une famille quelconque d’ensembles

On a déjà évoqué au chapitre 2 (Ensembles) l’union et l’intersection d’une suite (An)n∈N de sous-ensembles de E .
Nous allons généraliser cela à une famille (Ai)i∈I qui est indexée par un ensemble I non vide.

Définition 17.4 – Union et intersection

Soit (Ai)i∈I une famille de parties de E indexée par un ensemble I non vide (possiblement infini).

1. On définit l’intersection des Ai comme étant l’ensemble⋂
i∈I

Ai :=
{

x ∈ E | ∀i ∈ I x ∈ Ai
}

2. On définit la réunion des Ai comme étant l’ensemble⋃
i∈I

Ai :=
{

x ∈ E | ∃i ∈ I x ∈ Ai
}

3. On dit que les ensembles de (Ai)i∈I sont deux à deux disjoints si

∀i, j ∈ I i ̸= j =⇒ Ai ∩A j =∅

4. On dit que les ensembles de (Ai)i∈I sont disjoints dans leur ensemble si
⋂
i∈I

Ai =∅.

Exemple 3. Pour toute application f : E → F , l’ensemble des valeurs que prend f est :

f (E) = { f (x) | x ∈ E}=
⋃
x∈E

{ f (x)}

Définition 17.5 – Partition

Avec les mêmes hypothèses que ci-dessus, on dit que la famille (Ai)i∈I est une partition de E si :

1. ∀i ∈ I Ai ̸=∅
2.

⋃
i∈I

Ai = E

3. Les ensembles de (Ai)i∈I sont deux à deux disjoints.

Rappel : si la famille (Ai)i∈I est une partiiton de E, chaque élément de E est dans exactement un et un seul des
ensembles de (Ai)i∈I .

Exemple 4. ◦ La famille
([

k,k+1
[)

k∈Z est une partition de R.

◦ La famille ({k})k∈Z est une partition de Z, de même que la famille ({x})x∈R est une partition de R.

◦ Les ensembles 2Z et 2Z+1 forment une partition de Z.
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2.3 Classes d’équivalence

Définition 17.6 – Classe d’équivalence

Soit R une relation d’équivalence sur un ensemble E. Pour tout x ∈ E , on définit la classe d’équivalence
de x comme étant l’ensemble

cl(x) := {y ∈ E | xRy}

On la note parfois aussi x. Un élément quelconque y ∈ x est dit un représentant de la classe.

Remarque. Par symétrie, pour tous x,y ∈ E , on a :

y ∈ cl(x) ⇐⇒ xRy ⇐⇒ yRx ⇐⇒ x ∈ cl(y)

Exemple 5. ◦ Dans tout ensemble E , pour la relation R d’égalité 1, pour tout x ∈ E, on a

cl(x) = {y ∈ E | x = y}= {x}

◦ Dans Z, si on considère la relation “congru modulo 3”, alors

cl(2) = {y ∈ Z | y ≡ 2 [3]}
= {y ∈ Z | ∃k ∈ Z y = 2+3k}
= {2+3k | k ∈ Z}
= 2+3Z
= {· · · ,−4,−1,2,5,8, · · ·}

– Dans cette classe, on peut prendre comme représentant 2, ou 5 ou encore −7, etc.

– On peut remarquer que cl(2) = cl(5) = cl(8) = cl(−1), etc.

Théorème 17.7 – Propriétés des classes d’équivalence

Soit R une relation d’équivalence sur un ensemble E. Soit x,y ∈ E.

1. On a x ∈ cl(x). En particulier, cl(x) ̸=∅.

2. Si xRy, alors cl(x) = cl(y).

3. Les (différentes) classes d’équivalence forment une partition de E.

Démonstration.

1. Par réflexivité de R, on a xRx donc x ∈ cl(x).

2. On suppose que xRy. Montrons que cl(x)⊂ cl(y). Soit u ∈ cl(x). On a donc uRx.
Comme de plus, on a xRy, par transitivité on obtient uRy, si bien que u ∈ cl(y).
Par arbitraire sur u, on a ainsi cl(x)⊂ cl(y). De même, on montre que cl(y)⊂ cl(x).
D’où cl(x) = cl(y).

1. définie pour tous x,y ∈ R par : xRy ⇐⇒ x = y
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3. La famille de toutes les classes d’équivalence de E est (cl(x))x∈E . Cependant, deux ensembles de cette
famille peuvent être égaux (comme cl(2) = cl(5) dans l’exemple 5). On va donc considérer la famille de
classes d’équivalences distinctes, qu’on note (Ai)i∈I (avec I un ensemble qui permet de paramétrer ces
classes). Donc, par construction, si i ̸= j, alors Ai ̸= A j.

Pour tout i ∈ I, comme Ai est une classe d’équivalence, il existe xi ∈ E tel que Ai = cl(xi).

Montrons que (Ai)i∈I est une partition de E :

(a) Montrons que ∀i ∈ I Ai ̸=∅. Soit i ∈ I. On a Ai = cl(xi) ̸=∅ par l’assertion
1.

(b) Montrons que ∀i, j ∈ I i ̸= j =⇒ Ai ∩A j = ∅. Soit i, j ∈ I tels que i ̸= j.
Supposons par l’absurde que Ai ∩A j ̸= ∅. Il existe donc un élément u ∈
cl(xi)∩cl(x j). On en déduit que xiRu et uRx j. Ainsi xiRx j et par l’assertion 2,
on en déduit que cl(xi) = cl(x j). Or, i ̸= j donc Ai ̸= A j. Contradiction. Donc
Ai ∩A j =∅.

(c) Montrons que E =
⋃
i∈I

Ai. Par définition de
⋃
i∈I

Ai, on a
⋃
i∈I

Ai ⊂E . Montrons que

E ⊂
⋃
i∈I

Ai. Soit x ∈ E. Il faut montrer que ∃i ∈ I x ∈ Ai. Comme (Ai)i∈I est

la famille des classes d’équivalences distinctes, un élément de cette famille
est cl(x). Donc il existe i ∈ I tel que Ai = cl(x). Comme x ∈ cl(x), on a donc
x ∈ Ai. D’où le résultat.

Finalement, les (Ai)i∈I forment bien une partition de E .

Exemple 6. DansZ, si on considère la relation “congru modulo 3”, alors il y a 3 (différentes) classes d’équivalence :

0 = {a ∈ Z | a ≡ 0 [3]}= {3k | k ∈ Z}= 3Z

1 = {a ∈ Z | a ≡ 1 [3]}= 3Z+1

2 = {a ∈ Z | a ≡ 2 [3]}= 3Z+2

On vérifie que ces 3 classes forment bien une partition de Z. En particulier, tout entier est dans une et une seule
de ces classes.

3 Relation d’ordre

3.1 Définitions

Définition 17.8 – Relation d’ordre

Une relation R définie sur E est une relation d’ordre si

1. R est réflexive, càd ∀x ∈ E xRx
2. R est antisymétrique, càd ∀x,y ∈ E (xRy et yRx) =⇒ x = y
3. R est transitive, càd ∀x,y,z ∈ E xRy et yRz =⇒ xRz

On appelle ensemble ordonné un couple (E,R) où R est une relation d’ordre sur E.
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Les relations d’ordre sont plutôt notées en général ⪯ que R.

Exemple 7. ◦ Sur R, la relation x ⪯ y ⇐⇒ x ≤ y est une relation d’ordre. On vérifie facilement la réflexivité
et la transitivité. L’antisymétrie découle du fait que, pour tous x,y ∈ R

(x ≤ y et y ≤ x) =⇒ x = y

◦ Il en va de même pour la relation x ⪯ y ⇐⇒ x ≥ y.

◦ Sur P(E), la relation d’inclusion ⊂ est une relation d’ordre.

◦ Sur R, la relation x ⪯ y ⇐⇒ x < y n’est pas une relation d’ordre car elle n’est pas ............

Définition 17.9

Soit (E,⪯) un ensemble ordonné et x,y ∈ E . On dit que x,y sont comparables si x ⪯ y ou y ⪯ x.

Définition 17.10 – Ordre total et partiel

Soit (E,⪯) un ensemble ordonné. On dit que ⪯ définit un ordre total sur E si tout couple d’éléments de E
sont comparables, i.e. :

∀x,y ∈ E (x ⪯ y ou y ⪯ x)

Si ⪯ n’est pas un ordre total, on dit que ⪯ est un ordre partiel.

En particulier, l’ordre est partiel si et seulement s’il existe deux éléments qui ne sont pas comparables.

Exemple 8. Parmi les exemples précédents :

◦ ≤ est une relation d’ordre total : pour tous x,y ∈ R, on a x ≤ y ou y ≤ x.

◦ Il en va de même pour ≥.

◦ Par contre, ⊂ est une relation d’ordre partiel sur P(E), sauf exception. Par exemple, avec E = {0,1}, les
ensembles {0} et {1} ne sont pas comparables car :

{0} ̸⊂ {1} et {1} ̸⊂ {0}

3.2 Vocabulaire lié à l’ordre, revisité

Définition 17.11 – Vocabulaire lié à l’ordre

Soit (E,⪯) un ensemble ordonné, et A une partie de E .

• m ∈ E est un minorant de A si ∀x ∈ A m ⪯ x

• M ∈ E est un majorant de A si ∀x ∈ A x ⪯ M

• A est majorée (resp. minorée) si elle possède au moins un majorant (resp. minorant).

• A est bornée si A est majorée et minorée.

• m ∈ E est le plus petit élément (ou minimum) de A si m est un minorant de A et m ∈ A.

• M ∈ E est le plus grand élément (ou maximum) de A si M est un majorant de A et M ∈ A.

Théorème 17.12 – Unicité du maximum / minimum

Le plus petit élément (resp. le plus grand) de A, s’il existe, est unique.
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Démonstration. Soit M1 et M2 deux maxima de A. Comme M2 est un majorant de A et
que M1 ∈ A, on en déduit que M1 ⪯ M2. De même, on montre que M2 ⪯ M1. Par
antisymétrie de ⪯, on obtient M1 = M2.

Exemple 9. Pour la relation d’ordre ≤ sur R, les notions de majorant et de maximum se confondent avec celles
déjà vues au chapitre 11 (Nombres réels).

Exemple 10. On pose E = {0,1,2}. On munit P(E) de la relation d’ordre ⊂ et on pose

A =
{
{0,1}, {0,2}, {1,2}

}
Déterminer un majorant de A. Est-ce que A admet un maximum ?

Soit M ∈ P(E). M est un majorant de A ssi ∀X ∈ A X ⊂ M. On remarque que
M = E = {0,1,2} est bien un majorant de A.
Supposons par l’absurde que A admet un maximum qu’on note M. Alors M ∈ A. Si
M = {0,1}, comme M majore A, on aurait en particulier {1,2} ⊂ M. Contradiction.
On aboutit également à une contradiction avec M = {0,2} et M = {1,2}. Finalement,
A n’admet pas de maximum.

4 Méthodes pour les exercices

Méthode

Apprendre. Son. Cours.
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